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ABSTRACT

The basic fundamentals of statistical process control (SPC) were proposed by Walter
Shewhart for data-starved production environments typical in the 1920’s and 1930’s. In
the 21st century the traditional scarcity of data has given way to a data-rich environment
typical of highly automated and computerized modern processes. These data often
exhibit high correlation, rank deficiency, low signal-to-noise ratio, multi-stage and
multi-way structure, and missing values. Conventional univariate and multivariate
statistical process control techniques are not suitable in these environments. This talk
discusses the paradigm shift to which those working in the quality improvement field
should pay keen attention. We advocate the use of latent structured-based multivariate
statistical process control methods as efficient quality improvement tools in these
massive-data contexts. This is a strategic issue for industrial success in the

tremendously competitive global market.

Keywords: Multivariate statistical process control (MSPC); Principal component
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PREFACE

First of all I'd like to thank Geoff Vining and Ronald Does for inviting me to this
stimulating conference resembling the famous Gordon Research Conferences from the
old days. Being one of the keynote speakers from Europe is an honor and a challenge,

and I hope to satisfy the expectations.



As part of the Stu Hunter Conference’s sessions this talk tries to provide a
platform for discussion and the free exchange of ideas at the frontiers of statistics and
quality research focusing on a particular issue: Statistical Process Control.

The first thing I did when I was invited to prepare this talk was to browse the
internet looking for references on discussions, controversies, criticisms, challenges and
open research issues in statistical process control (SPC). Out of this material, I strongly
recommend the Journal of Quality Technology (JOT) panel discussion edited by
Montgomery and Woodall (1997), the Technometrics panel discussion edited by
Steinberg (2008) and the following references: MacGregor (1997), Woodall and
Montgomery (1999), Stoumbos et al. (2000), Woodall (2000) and Bisgaard (2012).

1. INTRODUCTION

Statistical process control (SPC) refers to statistical methods used to monitor and
improve the quality and productivity of manufacturing processes and service operations
(Stoumbos et al. 2000). Featured tools of SPC are control charts.

According to Shewhart (1931), the acknowledged father of control charts: "4
phenomenon will be said to be controlled, when through the use of past experience, we
can predict, at least within limits, how the phenomenon may be expected to behave in
the future." The extent to which this goal is successfully met depends on the
understanding of the type of variability affecting the process.

Variation remaining in a stable process reflects “common causes” that are an
inherent part of the process and which cannot be removed easily without fundamental
changes in the process itself: e.g. the design and operating settings of a polymerization
reactor contribute to the common cause variation of the viscosity of a polymer. As long
as you keep the process the same, common cause variation is the same from day to day,
yielding a process consistent over time. A process affected by only common (random)
causes of variation is said to be in “statistical control”. This means that the process is
predictable, i.e. you can predict what the process will make in the near future, e.g. the
proportion of batches meeting the customer specifications for a particular key property.

Added to the common cause system, other types of variability may occasionally
affect the stability of a process: e.g., operator errors, defective raw materials, improperly
adjusted or controlled equipment, sudden change in environmental conditions and so on.

These sources of variability are not part of the common cause system and, thus, they are



referred as “assignable” or “special causes”. They are sporadic in nature and cannot be
predicted. A process affected by special causes of variation is said to be “out of control”
in the sense that it is unstable and thus unpredictable.

It is crucial to distinguish between these two types of variation because the
responsibility for process improvement depends on what type of variation is present:
front-line personnel are responsible to find and make decisions on assignable causes;
common cause variation, on the other hand, is management’s responsibility.

Statistical process control (SPC) gathers a powerful collection of problem-solving
tools useful in understanding process variability, achieving process stability, and
improving process performance through the reduction of avoidable variability (i.e. the
removal of special causes). The goal of any SPC scheme is to monitor the performance
of a process over time in order to check whether the process behaves as expected (i.e.
the predicted behavior from the common cause system), and to detect any unusual
(special) event that may occur. By finding assignable causes, significant improvements
in process performance can be achieved by eliminating these causes (or implementing
them if they are beneficial). Control charts are the essential tools for pursuing this goal.

A control chart is a picture of a process over time that helps identify the
magnitude and type of variation present. To implement a control chart, one must
register data from a process over time. Decisions are required about the variables to
measure, the sample statistics to be monitored, the sample size and the time between
samples, the type of control chart, the control limits and the decision rules. All these
choices determine the cost of the monitoring scheme and its ability to detect certain out-
of-control conditions.

Mathematically, this problem has been formulated as detecting changes over time
in the vector of parameters 0 of an underlying probability distribution. In the case of
standard control charts for univariate variables it is usually assumed that the key
characteristic x at time ¢ is a normally distributed random variable that can be expressed

as x, =W+a,, where u is the process mean, and a; follows a stochastic “white noise”

process, i.e. a series of independent and identically normally distributed (iind) random

disturbances with zero mean and variance o (a; ~N(0,0°)). In this case, the
distribution of the key characteristic depends on the vector of parameters 6" ={u,o}.

“There are control charts proposed for monitoring the parameter (or parameters) of all



the standard probability distributions, both discrete and continuous” (Woodall and
Montgomery 1999).

Control charts for multivariate variables (used in multivariate statistical process
control — MSPC) usually assume that the (Kx1) vector of measured variables (i.e. key
characteristics) x is not time dependent and follows a K-dimensional normal

distribution, x ~ Ng (p,X). In this case the distribution function of the key
characteristics depends on the vector of parameters G

={ul,...,MK,UI,...,OK,OD,...,G(K_I)K}contalmng all the marginal means from the mean

vector p and all the marginal variances and covariances from the covariance matrix X

Although there are some disagreements regarding the relationships between
control charting and repeated hypothesis testing (Woodall 2000), control charts are
designed and evaluated under the assumption that if the process is operating with =0,
the process is said to be in (statistical) control, while if 8=0, the process is considered
out of (statistical) control. From the above relationship regarding the state of the process
and the occurrence of special causes of variation, this parametric statistical distribution-
based (i.e. theoretical) approach of control charting assumes that assignable causes
result in shifts in the values of the parameters vector 0.

Although conventional (M)SPC is sound from a statistical point of view, it suffers
from lack of applicability in data-rich environments, typical of modern processes. This
paper advocates the use of latent structures-based multivariate statistical process control
(LSb-MSPC) to deal with this issue.

The remainder of the paper is organized as follows: In Section 2, a critical view of
conventional SPC in data-rich environments and the need for a paradigm shift are
discussed. An overview of LSb-MSPC and a case study are presented in Section 3.
Section 4 discusses the potential and challenges of LSb-MSPC in data-rich

environments. Finally, some conclusions are summarized.

2. CRITICAL VIEW OF CONVENTIONAL SPC: THE NEED FOR
A PARADIGM SHIFT

The principles (or underlying assumptions) contained in the so-called

conventional SPC introduced in Section 1 assumed data sets with relatively low



frequency sampling and a small number of process variables. “This application
environment was typically one in which process data was relatively difficult to collect;
parts were sampled and measured manually at relatively long time intervals, and only a
few parts were evaluated each day for purposes of process monitoring and control”
(Woodall and Montgomery 1999). In addition, many of these early methods proposed in
the first half of the 20th century by Shewhart and others were designed for simplicity
and ease of calculation. They seemed to work; otherwise they would have not been so
widely applied in so many processes. While many advances in SPC methodology have
been achieved, in general, the primary focus of SPC research and available tools still
assume relatively low sampling frequency and dimensionality, with the possible
exception in the field of chemometrics.

Today’s SPC application environment is often different from the past data-starved
production environments. “On-line measurement, data capture, and analysis through
hierarchical, distributed computing systems are becoming the norm in many industrial
settings, from discrete parts to the chemical and process industries. This has totally
changed the nature of the data available for process monitoring and control” (Woodall
and Montgomery 1999). This dramatic change due to the revolutionary innovations in
sensor technology calls for a paradigm shift for quality improvement and control to
which those working in the quality improvement field should pay keen attention.

Univariate SPC schemes are totally inadequate in these multivariate contexts. As
commented by MacGregor (1997): “the presence of variable interactions in
experimental designs leads to the same difficulties in interpreting the results of one
factor at a time experimentation as does the presence of correlation among variables in
interpreting univariate SPC charts”. Applying univariate SPC charts to each individual
variable will force the operator to inspect a large number of control charts. When
special events occur in a process, they might affect not only the magnitude of the
variables but also their relationship to each other. These events are often difficult to
detect by charting one variable at a time in the same way as the human eye can not
perceive perspective by looking at an object with one-eye-at-a-time (Ferrer 2007).

Multivariate statistical process control (MSPC) schemes that treat all the variables
simultaneously are required in these new data-rich environments. In these situations
subgroup size (i.e. number of multivariate observations in each sample) is naturally n=1.
“The Shewhart X — R sampling paradigm (subgrouping) will be taken over by real-time

sampling, which favors statistical process control methods based on individual



observations” (Bisgaard 2012). This occurs frequently in the chemical and process
industries, and in automated manufacturing systems with 100% inspection.

At a first glance, it can seem that conventional control charts for multivariate
variables can meet the requirements of the paradigm shift but this is not the case as
shown in the following.

Conventional MSPC schemes are based on forming a single control statistic (a
quadratic form) from the (1XK) vector of measurements x registered in each sample,
assuming that x ~ Ng (u, X). They are designed under the parametric statistical
distribution-based (i.e. theoretical) approach of control charting to check for the stability

T
of a subset of the vector of parameters O ={Ml,...,MK,O'l,...,O‘K,O'lz,...,O'(K_I)K},

generally either the mean vector w or the covariance matrix X.

Hotelling’s T° control chart for monitoring process mean

One of the multivariate control charts most used in practice for monitoring the
mean vector of a process is the multivariate extension of the univariate Shewhart control
chart for monitoring the process mean. The chart is based on monitoring at each time ¢
the Hotelling’s T* statistic (Hotelling, 1947; Jackson, 1985; Wierda, 1994; Fuchs and
Kenett, 1998; Montgomery, 2005):

];2 = (Xt _X)TS_I (Xt _)_‘) (1)
where x, is the (Kx1) vector of measured variables at time ¢, X' = {il, Xy vy X K} is the

sample mean vector (estimate of the in-control (Kx1) mean vector p), and
S=(m-1)" E (x, -X)(x, -X)" is the (KxK) sample covariance matrix (estimate of the
i=1

in-control (KxK) covariance matrix X ) from the m samples of size n=1 collected in
Phase I. Upper control limits (UCL) at significance level (type I risk) a can be obtained
for Phase I and Phase II, based on the multivariate normality assumption (Tracy et al.
1992). (For a clarification on the meaning of Phase I and II, see Appendix).

The Hotelling’s 7° control chart checks if the mean vector p of the process
remains constant (assuming a constant covariance matrix). This implies that the
assignable causes may only affect the mean vector of the process (and not the

covariance structure) yielding an extremely simplistic assumption in practice.



Multivariate Shewhart-type control charts for monitoring process variability
Two indices for measuring the overall variability of a set of multivariate data are:

(1) the generalized variance |Z‘. , 1.e. the determinant of the covariance matrix, and (2)

the trace of the covariance matrix 77X, i.e. the sum of the variances of the K variables.
Alt (1985) presents control charts for monitoring process variability based on

these two indices, assuming that x follows a Nx(p,X) distribution, and that there are m

samples (i.e. number of subgroups) of size n>1 available. In the first case, the statistic to

be charted at time ¢ is

W, = =Kn+KnIn(n)-nln(|A,|/|S])+2r(S™A, ) )

where A, = (n-1)S,, S; is the sample covariance matrix of the #-th subgroup (n = K), S is
an estimate of the in-control covariance matrix X from Phase I, and #r is the trace
operator. When the process is in control, the ¥, statistic follows approximately a 5’
distribution with Kx(K+1)/2 degrees of freedom.

b

The second chart is based on plotting the sample generalized variance |St

assuming this is approximately normally distributed. Some authors study the

distribution of the |S l| statistic obtaining control limits for simplistic scenarios (e.g. K

=3) (See Aparisi et al. 1999).

These charts can be used in combination with the Hotelling’s 7> charts to check if

the process mean wu and covariance matrix X are constant over time. Although |S t| isa

widely used measure of multivariate dispersion, it is a simplistic scalar representation of
a complex multivariate structure. Therefore, its use can be misleading in the sense that
different correlation structures can yield identical generalized variances. Analogously,
different changes in marginal variances can yield the identical trace of the covariance
matrix. Note that if rational subgroup size n=1 (typical in data-rich environments as

commented before) these charts cannot be used.

Multivariate control charts with memory

The previous Shewhart-type control charts are extremely useful in Phase I
implementation of SPC (model building), where the process is likely to be out-of-
control and experiencing assignable causes that result in large shifts in the monitored
parameters. They are also very useful in the diagnostic aspects of bringing a “wild”

process into statistical control, because the patterns on these charts often provide



guidance regarding the nature of the assignable cause (Montgomery 2005). This
advantage comes from the fact that they are plots of the actual data providing a picture
of what the process is doing that makes the interpretation easy. These charts act as
global radars, being potentially capable of drawing attention to unusual kinds of
behavior and hence to possible signals and causes previously unsuspected (Box and
Lucefio 1997).

The major disadvantage of Shewhart-type control charts is that they are relatively
insensitive to small process shifts. In order to be able to detect small and moderate-sized
sustained shifts in the vector of parameters 0, time-weighted control charts that
accumulate information across past data have been proposed (Lowry et al. 1992).

One approach is to form an exponentially weighted moving average (EWMA)
(Hunter 1986) of present and past values of statistics such as Hotelling’s 7° (Eq. 1):

MEWMA; = AT +(1- A )MEWMA? (3)

where A is a smoothing constant (0 <A < 1).
A second approach is to form an EWMA of each individual measured variable

and then combine across the different variables to create a new multivariate vector w

defined as

w, =Ax, +(1-A)w, 4)
Then chart the quadratic form

MEWMA} =w/S, w, (%)
where the covariance matrix is S, = L[l -(1- )L)ZI]S ,and S is an estimate of the in-

control covariance matrix X from Phase 1.

Fault diagnosis

Once the multivariate control chart signals an out-of-control alarm it is necessary
to identify an assignable cause. This involves two steps: first (diagnostic) find which
measured variable(s) contributes to the out-of-control signal, and second (root cause
identification) determine what happened in the process that upset the behavior of these
variables. For pursuing the first step (isolation of variables responsible for the out-of-
control signal), several approaches have been reported in the literature. Kourti and
MacGregor (1996), Mason et al. (1997), Bersimis et al. (2007) and Vidal-Puig and

Ferrer (2013) provide an extensive review and references for diagnostic procedures in



conventional MSPC schemes. Regarding the second step (identifying root causes of the
problem), management and operator actions based on technical process knowledge will

be required.

Problems of conventional MSPC schemes in data-rich environments

Conventional MSPC control charts suffer from critical problems in data-rich
environments.

Many require the assumption of independent multivariate normal distribution.
Tests for multivariate normality may be impractical to perform on a regular basis in an
industrial setting but these are needed to check this assumption. If this assumption is not
reasonable, control limits may be obtained from resampling methods such as bootstrap
(Liu and Tang 1996) or other simulation methods. The requirement is to have a
sufficiently large historical data set available. Non-parametric multivariate control
charts derived from the notion of data depth have been proposed (Liu 1995, Liu et al.
2004).

The performance of conventional MSPC control charts in detecting process
disturbances and diagnosing their root causes tends to deteriorate as the number of
monitored variables increases (Lowry and Montgomery 1995, Vidal-Puig and Ferrer
2013). This is the consequence of the structure of the multivariate control statistics used
that relies heavily on the covariance structure. As shown in Eq. (1), (2), (3) and (5),
multivariate control charts need the inverse of a covariance matrix. To avoid problems
with this inverse, the number of multivariate observations (i.e. samples) (m) has to be
larger than the number of variables (K), and the covariance matrix has to be well
conditioned (i.e. variables must not be highly correlated). The non-parametric
approaches based on the notion of data depth (Liu 1995 and Liu ef al. 2004) also require
that m>K, and that K is not too large. Otherwise, computing requirements make the
approach unfeasible.

Moreover, complete data (no missing values) are required to calculate Hotelling’s
T* or MEWMA® statistics for any particular sample. Multivariate control charts for
monitoring process variability based on the generalized variance or the trace of the
covariance matrix need subgroup size n>1.

These requirements are not met in highly automated processes where one is likely
to encounter large data sets with not only a few product quality variables but also

hundreds (or even thousands) of highly correlated process variables measured at a high



frequency rate, and in Phase I, with (often) more variables than samples (i.e. m<K). The
nature of high-technology data is diverse coming from a huge variety of different kind
of sensors providing different type of signals: spectra (chemical signals), pressures,
temperatures, flows, ... (physical signals), pH, conductivity, dissolved oxygen
(biochemical signals), gene expression profiles (genetic signals), electronic eyes (digital
images), electronic noses and tongues (potentiometric signal), electronic ears (acoustic
signals) and so on. Multivariate normality in these cases is an illusion. Missing data
appear for different reasons: failures in sensors or in the communication between the
instrumentation and the digital control system (DCS), sensors taken offline for routine
maintenance, manual samples not collected at the required times, data discarded due to
gross measurement errors, and sensors with different sampling periods (Arteaga and
Ferrer 2002). Autocorrelation (i.e. data correlation over time) is also part of the
common-cause system affecting this type of processes. Lack of independence between
successive observations shows up whenever the interval between samples becomes
small relative to the process dynamics (i.e. inertial elements as raw materials flow,
storage tanks, reactors’ residence times or environmental conditions, defining the
settling time of the process). This is more the rule than the exception in modern process
environments due to information technologies that allow registering data from every
part produced (e.g. in computer integrated manufacturing environments in
manufacturing) or at high sampling rates (e.g. in continuous and batch process
industries). All these issues advise against using conventional MSPC in these data-rich

environments.

The paradigm shift

All the papers mentioned in the Preface agree SPC has to evolve to face the
challenges of massive-data environments. Some of the conclusions and future directions
(mostly proposed fifteen years ago) follow:

* SPC must be adapted to a changing manufacturing environment, massive data
sets, multi-step production processes, better diagnosing methods (traceability),
higher quality requirements, and greater computing capability (Woodall and
Montgomery 1999).

e “[ cannot believe that there are tests for multivariate normality with sufficient

power for practical sample sizes that I would even bother to use them;
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distribution-free multivariate SPC is what we need” (Coleman in Montgomery
and Woodall 1997, p. 149).

*  “One important problem is traceability, i.e. rapid identification of the sources of
an out-of-control condition by linking the subgroup identifier to information
about raw material and earlier steps in the process that is available on-line...
Another problem is the management of data and control limits for large number
of processes that are continually evolving over time... large-scale applications
require software systems that compute, save, update, and display the control
limits” (Palm et al. in Montgomery and Woodall 1997, p. 126).

*  “Researchers developing new technologies can help change this situation by
emphasizing the gains that can be made using more sophisticated methods
alongside the traditional Shewhart charts, by implementing them in easy-to-use
software, and by “spreading the word” wherever they can” (Crowder et al. in
Montgomery and Woodall 1997, p. 139).

* A problem area in SPC is the detection and subsequent monitoring of
multivariate autocorrelated data (Mason et al. in Montgomery and Woodall

1997, p. 142).

In 1997 Palm et al. (in Montgomery and Woodall 1997, p. 122) stated that there
were three groups with distinct perspectives on control charts methods: broad
applications (Group 1), technical opportunities (Group 2), and theory and methods
(Group 3). For Group 1, the key issues are the breadth and effectiveness of application
of control charts, coupled with competitive issues which motivate their use. Group 2 is
made up of statisticians, chemical engineers, chemometricians and other scientists who
are well trained in SPC and work closely with problem domain specialists who are
knowledgeable about the processes. For this group, the future of control charts was
moving in the direction of techniques that are appropriate for large multivariate data sets
that possess less than full statistical rank: latent structures-based (LSb) techniques for
dimension reduction such as principal component analysis (PCA) and partial least
squares (PLS). This was also stated by Montgomery and Woodall (1997): “Areas of
future research that have considerable promise include developing methods for
statistical monitoring and control with very large data sets, developing distribution-free
multivariate methods... developing more insight regarding the performance of methods

such as partial least squares and principal components in multivariate process

11



monitoring, and investigating approaches for making these techniques easier to use in
practice”’. Some contributors to the panel discussion on the future of industrial statistics
edited by Steinberg (2008) stated the same conclusion. For Group 3, made up mainly of
statisticians and industrial engineers with an academic interest in control chart methods,
there was a challenge: to understand the process generating the data and to work closely
with engineers and other scientists and problem domain specialists involved in massive-
data environments.

Group 2 has mainly contributed to journals such as Chemometrics and Intelligent
Laboratory Systems, Journal of Chemometrics, Industrial & Engineering Chemistry
Research, AIChE Journal, and Computers & Chemical Engineering. The key journal
for Group 3 is Journal of Quality Technology, and to some extent Technometrics. The
papers referred in the Preface belong mainly to the latter group. From the papers
published in both group of journals since 1997, I guess that while Group 2 has done a
good job in developing useful LSb-methods for MSPC and providing successful case
studies mainly in the (bio)chemical industry, Group 3’s challenges posed in 1997 still
remain in 2013.

My personal opinion is that a paradigm shift is needed, especially for researchers
belong to Group 3 (Theory and Methods). The parametric statistical distribution-based
(i.e. theoretical) approach of control charting advocated by Group 3 researchers is no
longer appropriate in data-rich environments. The hypothesis that assignable causes of
variation result in shifts of a particular subset of the parameter vector is hard to believe
in practice. A holistic role of SPC for process improvement, and not only for
monitoring, must be considered. The focus must be the process, not the model.
Surprisingly, these ideas are not really new; they are rooted in Shewhart’s basic
fundamentals (Wheeler in Montgomery and Woodall 1997, pp. 154-155):

e “Shewhart was not trying to find some exact model to describe the process, but
he was trying to determine if a process fits (at least approximately) a very broad
model of “random behavior”.

*  “The emphasis is not upon the use of the model to describe the process, but upon
the characterization of process behavior as a starting point for process
improvement”.

*  “When we focus on the control chart as a modeling procedure we will have, as a
consequence, a narrow perception of how to use control charts. This is the

origin of the idea that control charts are only useful for process monitoring...
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The point is that monitoring is only a minor part of what control charts can do,
rather than being all that they can do”. This will be illustrated in the case study
in Section 3.

* The real advantage of Shewhart's charts is the way they make the data come
alive. ... They allow the human mind to immediately focus on the interesting
characteristics in the data without being distracted by the unimportant details.
Moreover, they provide a uniform method of analysis whereby a group of people
can agree on what constitutes a potential signal... The real power of Shewhart’s
charts is not quantified by Average Run Length curves. The real power of
Shewhart’s charts is their ability to get those with very little training to

understand and use data properly.

Attendees of the 2013 Stu Hunter Conference will recognize themselves as being
part of one of Palm ef al.’s groups. Although I originally belonged to Group 3, since I
visited Prof. John F. MacGregor at MacMaster University in 1997, I realized the
potential of LSb-methods and started moving towards Group 2. Anyway, no matter
which group anyone belongs to, I guess all people interested in SPC should work
together to reduce the distance between the different groups and make the future of SPC
a successful story. In this paper I will defend my personal view of the paradigm shift
needed (rooted in Shewhart’s basic principles), and I will advocate the use of latent
structured-based multivariate statistical process control methods as key quality
improvement tools in massive-data contexts and a strategic tool for industrial success in

the tremendously competitive global market.

3. LATENT STRUCTURES-BASED MSPC

For treating large and ill-conditioned data sets that are not full statistical rank
(m<K), we advocate the use of latent structures-based (LSb-) MSPC in the way they
were proposed by Kourti and MacGregor (1996) and Nomikos and MacGregor (1995).
Latent structures methodology exploits the correlation structure of the measured
variables by revealing the few independent underlying sources of variation (latent
structures) that are driving the process at any time. Multivariate statistical projection

methods such as principal component analysis (PCA) (Jackson, 2003) and partial least
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squares (PLS) (Geladi and Kowalski 1986, Helland 1988, and Hoskuldsson 1988) are
used to reduce the dimensionality of the monitoring space by projecting the information
in the measured variables down onto low-dimensional subspaces defined by a few latent
variables (i.e. scores). The multivariate scores are mathematically orthogonal and
optimal summaries of the measured variables, so they are ideally suited for displaying
in control charts. The scores are also less noisy than the measured variables, since they
are weighted averages (linear combinations) of the measured variables. The process is
then monitored in these latent subspaces by using a few multivariate control charts built
from multivariate statistics which can be thought of as process performance indices, or

process wellness indices (Kourti, 2005).
Basically, two multivariate control charts based on 7. (sum of squares of

standardized scores) and SPE (squared prediction errors) statistics are enough to
summarize the information in the measured variables. These control charts are based on
a minimal number of assumptions. The only essential one is that the LSb-model has
been built on a representative set of data that captures all and only common cause
variation (in-control or reference data set). The statistical variation about this model that
captures the in-control behavior provides a reference distribution from which control
limits can be derived. Neither the assumption of normality nor independence of
consecutive subgroups are needed if one has enough data in Phase 1. In this case, control
limits for the Phase II multivariate charts can be derived based on reference
distributions obtained from Phase I data.

These charts retain all the simplicity of presentation and interpretation of
conventional univariate SPC charts. However, by using the information contained in all
the measured (process and quality) variables simultaneously, they are much more
powerful for detecting out-of-control conditions and diagnosing their root causes.
Computing variable contributions eliminates much of the criticism that principal
components lack physical interpretation. The contribution plots (see Appendix A.2) will
not explicitly reveal the cause of the event but they point to the group of measured
variables that are no longer consistent with normal operating conditions, providing good
insight into plausible causes to operators and engineers. This is a good starting point for
further fault analysis by using process knowledge to deduce possible root causes.

As Kourti (2002) commented, by monitoring only the final quality attributes (e.g.

melt index of a polymer) -as frequently done in conventional MSPC- we are in fact
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performing statistical quality control (SQC). For true statistical process control (SPC),
one must also look at all the process variables involved (e.g. temperature profiles, raw
materials properties, mass ratios, and so on). “With new sensor technologies taking
center stage, quality monitoring and control will move upstream and the focus will
increasingly shift from monitoring output quality to monitoring and controlling inputs
and process parameters” (Bisgaard 2012).

Monitoring the process variables is expected to provide much more information
on the state of the process and to supply it more frequently. Furthermore, any abnormal
events that occur will also have their fingerprints in the process data. Thus, once an
abnormal situation is detected, it is easier and faster to diagnose the source of the
problem, as we are dealing directly with the process variables. On the contrary, control
charts on the quality variables will only signal when the product properties are no
longer consistent with expected performance, but they will not point to the process
variables responsible for the problem, making more difficult and slower the fault
diagnostic process.

Another advantage of monitoring process data is that quality data may not be
available at certain stages of the process. Sometimes product quality is determined only
by the performance of the product later, during another process. For example, if a
catalyst is conditioned in a batch process before being used for polymer production, the
quality of the catalyst (success of conditioning) is assessed by its performance in the
subsequent polymer production. It would be useful to know if the catalyst will perform
well before using it; monitoring the batch process variables would detect abnormal
situations and would provide an early indication of poor catalyst performance.

In some cases, the scarce properties measured on a product are not enough to
define entirely the product quality and performance for different applications. For
example, if only the viscosity of a polymer is measured and kept within specifications,
any variation in end-use application that arises due to variation in chemical structure
(branching, composition, end-group concentration) will not be captured. In these cases,
the process data may contain more information about events with special causes that
may affect the product structure and thus its performance in different applications.
Finally, by monitoring process variables, other abnormal operating conditions may be
detected as, for example, a pending equipment failure or a process failure (Kourti 2002).

Finally, by using LSb-MSPC, missing and noisy data are easily handled (Nelson
et al. 1996, and Arteaga and Ferrer 2002) and predictive models based on partial least
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squares (PLS) or principal component regression (PCR) can also be used (Martens and
Naes, 1989).

For those interested in the technical details of LSb-MSPC see the the APPENDIX.
Kourti and MacGregor (1996) provide an excellent overview and discussion of
conventional vs LSb-MSPC monitoring, an example in a continuous chemical process,
and a list of useful references. For an example of the application of LSb-MSPC in a
manufacturing industry, see e.g. Ferrer (2007). For those interested in the particularities
of LSb-MSPC for batch processes, I strongly recommend Nomikos and Macgregor
(1995). Commercial software implementing LSb-MSPC is available. See, e.g. SIMCA
from Umetrics (http://www.umetrics.com/simca) or ProMV from ProSensus

(https://prosensus.ca/solution/promv).

Case study

Data from a continuous process owned by a petrochemical company are used to
illustrate the potential of LSb-MSPC as an efficient statistical tool for process
understanding, monitoring and improvement. The goal is to diagnose the causes of
variability of one of the critical to cost characteristics: the yield of the reaction, and to
implement a multivariate monitoring scheme. This process takes place in several units.
The data base includes: 72 process variables (temperatures, flows, tank levels, etc.)
measured every hour from on-line electronic sensors located in the different units, 5
yield variables (%) measured every 8 hours, and 3 yield variables (%) measured every
day from off-line laboratory analyses. The data were collected during two campaigns of
approximately 4 months each.

Figure 1 shows the evolution of the most critical yield (%) measured every 8 hours
in the two campaigns analyzed. Practically, both campaigns have similar average
performance in process yield (no statistical significance mean difference, p-value >

0.05).
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Figure 1: Most critical yield (%) measured every 8 hours in two campaigns: 1 (circles),

2 (crosses).

A question arises: does similar behavior in average output mean similar (i.e.,
consistent) process? The answer in this case is “no”. Figure 2 shows the score scatter
plot of the two latent variables of the partial least squares discriminant analysis (PLS-
DA) (Sjostrom et al. 1986) fitted using only data from the 72 process variables
(measured every hour). PLS-DA is a multivariate statistical method for classification
and discrimination purposes (as e.g. Fisher’s Discriminant Analysis) especially suited
for data-rich environments (Prats-Montalban et al. 2006). In this example the original
72-dimensional space has been projected (compressed) into a 2-dimensional subspace
that best segregates the two campaigns. Each one of the points shown corresponds to an
hour. By looking at the swarm of points corresponding to each campaign it is clear that
the campaigns do not overlap, with campaign 1 (circles) being more consistent than
campaign 2 (crosses). The different clusters in campaign 2 are the result of
discriminating process variables being operated with high variability and around
different set points (See also Figures 4 and 7).

To understand which of the process variables has been operated in a different way
in the two campaigns, the coefficient plot with 95% jack-knife confidence intervals
(Efron and Gong 1983) shown in Figure 3 is a useful tool. In this case almost all the
process variables are statistically significant (p-value<0.05) as their corresponding 95%

jack-knife confidence intervals do not contain the cero value. This means that their
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behavior is statistically different in the two campaigns. Figure 4 shows a time series
chart of one of these discriminating variables (signaled with an arrow in Figure 3) as an

example.
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Figure 2: Score plot of the two components of the PLS-DA model: campaign 1 (circles),

campaign 2 (crosses).
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Figure 3: Coefficient plot of the PLS-DA model with 95% jack-knife confidence

intervals for each one of the 72 process variables measured.
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Figure 4: Time series plot of one of the process variables (measured every hour and
signaled with an arrow in Figure 3) with different behavior in the two campaigns: 1

(circles), 2 (crosses).

Process engineers realized that both campaigns yielded similar performance in the
critical to cost characteristic produced under different operational policies. Therefore,
the same performance for the output variable does not necessarily mean a similar
process. Contrary to the common belief, this case study revealed that operators were
implementing different operational rules, leading to different costs and safety between
campaigns.

After comparing both campaigns, the operators considered campaign 1 more
appropriate in terms of stability, cost and safety. A latent structured-based MSPC
scheme was built using process variables data from this campaign. For technical details,
see Phase I Section in Appendix. In order to illustrate the ability of this LSb-MSPC to
detect and diagnose future out-of-control events, data from campaign 2 were projected
onto the reference model from campaign 1 as if they were future observations from the

process. For technical details, see Phase II Section in Appendix.
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Figure 5 shows the residual standard deviation (DModX) control chart (see Eq.
A.11 in Appendix) with upper control limit (UCL) at 5% significance level (see Eq.
A.13 in Appendix) displaying in-control data from campaign 1 (circles) and out-of-
control data from campaign 2 (crosses). (Note that although there are some DModX
values higher than UCL in campaign 1 (circles) most of them are close to the UCL an
obey the in-control average number of false alarm observations -in this case, approx.
0.05 x 2750= 137.5). In order to isolate the measured variables responsible for the out-
of-control signals, Figure 6 shows the contribution plot to the DModX (see Eq. A.15 in
Appendix) for two out-of-control observations from campaign 2: # 3059 and #3475
(signaled in Figure 5).

-

DModX

0 500 1000 1500 2000 2500 3000 3500 4000 4500 S000 SS500

Sample
Figure 5: DModX control chart: campaign 1 (circles), campaign 2 (crosses). Upper
control limit (UCL) at 5% significance level (red line).
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Figure 6: Contribution plot to the DModX for two out-of-control observations from

campaign 2: # 3059 (top) and #3475 (bottom).

From Figure 6 it is clear that the same two process variables (signaled with an
arrow) have the highest contributions to the DModX in both out-of-control
observations. The opposite signs in the contributions mean that their behavior in the two

campaigns are opposite as shown in Figure 7.
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Figure 7: Time series plot of the two process variables (measured every hour) with a
high contribution to the DModX (signaled with an arrow in Figure 6): 1 (circles), 2

(crosses).
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4. POTENTIAL AND CHALLENGES OF LSb-MSPC IN DATA-
RICH ENVIRONMENTS

As commented by Kourti (2005), multivariate monitoring schemes based on
projection to latent structures methods have been receiving increasing attention by
industrial practitioners in the last 20 years. Several companies have enthusiastically
adopted the methods and have reported many success stories. Latent structures-based
MSPC has been used for process monitoring, fault detection and diagnosis in
continuous and batch industrial processes, and there is a large list of publications
reporting successful industrial applications in different fields (petrochemical, polymer,
chemical).

In pharmaceutical industry, latent variables-based MSPC is playing a critical role
in the successful implementation of process analytical technology (PAT) supported by
the United States Food and Drug Administration (FDA). PAT has been defined by the
FDA as “systems for the analysis and control of manufacturing processes based on
timely measurements during processes of critical quality parameters and performance
attributes of raw and in-process materials and processes to assure acceptable end
product quality at the completion of the process” (http://www.fda.gov/cder/guidance).
With this initiative, the FDA tries to motivate the pharmaceutical industry to improve
process control strategies for high-quality, cost-effective pharmaceutical products.
Kourti (2006) discussed the critical role of latent variables-based MSPC methods for
process understanding, abnormal situation detection and fault diagnosis, as linked to
PAT.

LSb-MSPC techniques can also be used to extract subtle information from digital
images related to product quality. Such information can be used for prediction,
monitoring and control. The methodology, based on multivariate image analysis (MIA)
(Geladi and Grahn 1996), can be used to monitor solids and other heterogeneous
materials (lumber, steel sheets, pulp and paper products, polymer films, multiphase
streams, etc.). Image analysis provides non-invasive, informative, inexpensive and
robust on-line sensors for the solids and liquids industry. Therefore it opens new ways
for the successful monitoring and control of processes that are traditionally difficult due
to lack of sensors. Several applications have been reported in the literature: on-line

monitoring of time varying images and lumber defects (Bharati and MacGregor 1998,
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2003); monitoring and control of the amount of coating applied to the base food product
and the distribution of the coating among the individual product pieces in snack food
industry (Yu and MacGregor 2003, Yu et al. 2003); defect detection and classification
in ceramic tiles, artificial stone countertops and orange fruits (Prats-Montalbdn and
Ferrer 2007). Duchesne et al. (2012) provide a highly recommended review of
techniques and applications of LSb-MSPC applied to digital images in the process
industries. For those interested in using LSb-MSPC with hyperspectral digital images
see, e.g. Prats-Montalban et al. (2011).

CONCLUSIONS

As commented by Bisgaard: “The confluence of the four technological
developments of (a) cheap and powerful computing hardware, (b) powerful and easy-to-
use statistical software and statistical graphics, (c) easy and cheap transfer and storage
of massive amounts of data and (d) the proliferation of sensor technology ... has
already transformed industrial statistics, especially in the past 20 years, and will
continue to exert dramatic changes to industrial statistics, the applications and the
theory and tool developments™ (Steinberg 2008, p. 111).

“The role of industrial statistics is fundamentally as a catalyst to systematic data-
driven knowledge generation, learning and innovation in the industrial environment. As
such, statistics will remain a powerful general-purpose technology applicable to all
sectors of industry, service, and manufacturing.... The quest for quality, whether in
services or manufacturing, likely will continue to inspire developments in such areas as

.. Statistical process monitoring and control” (Bisgaard in Steinberg 2008, pp.106-
107).

“Many modern systems generate enormous amounts of useful data during their
routine operation, including information about the operating environment and use
conditions, logistics, and the state of the system. Often such data can be accessed
remotely allowing remote monitoring and diagnostics. ... We have now the capability
of, for example, diagnosing (often remotely) the health of products and systems, such as
airplanes and locomotives. This provides information for ‘just-in-time” maintenance or
systems shutdown to avoid failures. We foresee such technology extended to humans,

equipping people with monitors that provide forewarning of an impending heart attack
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even before the patient feels any symptoms. For both products and humans, the goal is
the same - recognize a “signal” rapidly, while minimizing the false alarm rate” (Hahn-
Doganaksoy in Steinberg 2008, p.114).

“The biggest challenge that I see is to create better statistical methods, especially
more intuitive and easier-to-understand multivariate and multivariate time series
techniques, software combined with statistical graphics to enable the user to understand
the implications of the often complex multivariate statistical analysis and modelling”
(Bisgaard in Steinberg 2008, p. 117).

The age of conventional uni- and multivariate SPC has gone. Monitoring one-
variable-at-a-time is not only ineffective but also practically unfeasible in data-rich
environments. Using conventional MSPC is not suitable due to the instability problems
of the Hotelling’s T” statistics caused by the ill-conditioning of the covariance matrix of
the measured variables. This approach can be mathematically unfeasible if the
covariance matrix is singular. Modern manufacturing processes where hundreds of
variables are registered through automated in-process sensing calls for a paradigm shift.
It is crucial to recover the central role of the process improvement (not the model
refinement), rooted in Shewhart’s basic fundamentals. The use of latent structures-based
methods for the last 15 years has revolutionized the idea of MSPC. These are flexible
tools able to face the challenges stated in Section 2 for both continuous and batch
processes: dealing with multivariate autocorrelated processes, multi-step processes,
model updating, missing data, traceability and fault diagnosis, among others. This paper
intends to generalize the practical use of these powerful tools in massive-data
environments typical of modern processes of the 21* century.

Finally, I would like to quote part of a personal communication John Stu Hunter
sent me some days before the conference honoring his 90™ birthday: “I fully agree that
our modern data sources have long outrun the Shewhart days of univariate and
supposed independent observations. Your paper supplies a wonderful stimulus and

introduction to the needs of modern QC”.
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APPENDIX: OVERVIEW OF LSb-MSPC

The LSb-MSPC scheme, as any SPC scheme, is carried out in two phases. In
Phase I (model building) monitoring charts are built according to a set of historical in-
control data, once the performance of the process has been understood and modeled,
and the assumptions of its behavior and process stability are checked. In Phase II
(model exploitation) these charts are used to monitor the process using on-line data,
assuming the form of the distribution to be known along with the values of the in-

control parameters (Woodall, 2000).

A.1 Phase I (model building): exploratory data analysis and off-line

process monitoring

The main goal in Phase I is to model the in-control process performance based on
a set of historical in-control (reference) data. This data set is one in which the process

has been operating consistently (stable over time) in an acceptable manner.
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Occasionally, this historical in-control data set is not directly available, but has to be
extracted from historical databases in an iterative fashion as noted below. This
explorative analysis of historical databases is a useful technique for improving process
understanding and detecting past faults in the process (out-of-control samples). By
correctly diagnosing their root causes, some countermeasures can be implemented,
improving the future performance of the process.

Suppose the historical database consists of a set of m multivariate observations
(objects or samples of size n=1) on K variables (on-line process measurements,
dimensional variables or product quality data) arranged in a (m x K) data matrix Z.
Variables in matrix Z are often pre-processed by mean-centering and scaling to unit
variance. With mean-centering the average value of each variable is calculated and then
subtracted from the data. This usually improves the interpretability of the model
because all pre-processed variables will have mean value zero. By scaling to unit
variance each measured variable is divided by its standard deviation and will have unit
variance. Given that projection methods are sensitive to scaling, this is particularly
useful when the variables are measured in different units. After pre-processing, the
matrix Z is transformed into matrix X.

Principal component analysis (PCA) is used to reduce the dimensionality of the
process by compressing the high-dimensional measured data matrix X into a low-
dimensional subspace of dimension 4 (4=<rank(X)), in which most of the data variability
is explained by a fewer number of latent variables, which are orthogonal and linear
combinations of the measured ones. This is done by decomposing X into a set of 4 rank

1 matrices

X = itapz + rari‘(:t)apj =TP'+E=X +E (A1)
a=1 a= A+

P (KxA) is the loading matrix containing the /oading vectors p,, which are the
eigenvectors, corresponding to the A4 largest eigenvalues of the covariance matrix of the
measured pre-treated data set X, and define the directions of highest variability of the
new latent 4-dimensional subspace. T (m*A4) is the score matrix containing the location
of the orthogonal projection of the measured observations onto the latent subspace. The
columns t, of the score matrix T (t,=Xp,) represent the new latent variables with
variances given by their respective eigenvalues (A,). These new latent variables
summarize the most important information of the measured K variables, and thus can

predict (reconstruct) X with minimum mean square error, X =TP'. Matrix E (mxK)
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contains the residuals (statistical noise), i.e. the information that is not explained by the
PCA model.

The dimension of the latent variable subspace is often quite small compared with
the dimension of the measured variable space (i.e., 4 << rank (X)). Several algorithms
can be used to extract the principal components. For large ill-conditioned data sets it is
recommended to compute the principal components sequentially via the NIPALS (non-
iterative partial least squares) algorithm (Wold, 1966) and to stop based on different
criteria (Wold, 1978; Jackson, 2003; Camacho and Ferrer, 2012). Another advantage of
NIPALS algorithm is that it easily handles missing data (i.e. observation vectors from
which some variable measurements are missing). The quality of the fitted PCA model
can be evaluated by computing several parameters, such as R’, that measures the
goodness of fit, or 0" that indicates the predictive capability of the model (Eriksson et
al.,2001).

Eq. (A.1) shows that the PCA model transforms each K-dimensional measured
observation vector x; (i" row of matrix X) into an A-dimensional score vector

t = {til,tiz,...,tl. A} (ith row of matrix T) and a residual vector e; (ith row of matrix E).

From the scores and the residuals (prediction errors) associated with each observation,
two complementary (orthogonal or independent) statistics are derived: the Hotelling’s

T? and the SPE (sum of squared prediction errors). The T statistic for the i"

observation is defined as
2o N L

T; =t/O, =2x_ (A.2)
where @ (4xA) is the covariance matrix of T (diagonal matrix of the highest 4
eigenvalues {7\1,...,7\. A}). This statistic is the Hotelling-7° statistic when a reduced
subspace with 4 components is used instead of the measured variables space, and it
represents the estimated squared Mahalanobis distance from the center of the latent
subspace to the projection of an observation onto this subspace. Under the assumption
that the scores follow a multivariate normal distribution (they are linear combinations of

random variables), it holds (Tracy et al., 1992) that in Phase I, T, (times a constant)

follows a beta (B) distribution

T2 ~ (m’;l) (A.3)

BA /2(m-A4-1)/2

while in Phase I, T; (times a constant) follows an F distribution
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T; ~M ) (A4)
m(m—A)

The difference in both distribution comes from the fact that in Phase I the same
observation vectors X; collected in the reference data set are used for two purposes: (i) to
build the PCA model and work out the control limits of the charts, and (ii) to check
whether they fall within these control limits. Therefore, observations in the reference
data set are not independent of PCA model parameters used to derive the statistics to be
monitored. In contrast, in Phase II new observations (not used for model building) are
checked against the control limits calculated from the in-control data, and therefore,
independence is guaranteed. Anyway, if a large reference data set is available Eq. (A.4)

can also be used for approximating the distribution of the T’/ statistic in Phase 1.

On the other hand, the SPE statistic for i observation x; is given by
* \T *
SPE =¢/e, = (xl. —xl.) (xl. —xi) (A.5)
where e; is the residual vector of i observation, and x, is the prediction of the

observation vector x; from the PCA model. The SPE statistic represents the squared
Euclidean (perpendicular) distance of an observation from this subspace, and gives a
measure of how close the observation is to the 4-dimensional subspace. Assuming that
residuals follow a multivariate normal distribution, Box (1954), Jackson and Mudholkar
(1979) and Eriksson et al. (2001) derived approximate distributions for such quadratic
forms.

From these two statistics, in LSb-MSPC two complementary multivariate control
charts are constructed. Shewhart-type control charts for individual observations are
often used in practice. Nevertheless, other types of rational subgrouping or multivariate
charts such as MEWMA charts (Lowry ef al,, 1992) may be used. The latter may be
specially suited for autocorrelated processes.

The control limits of the multivariate control charts are calculated following the
traditional SPC philosophy. In Phase I, an appropriate historical or reference set of data
is chosen which defines the normal or in-control operating conditions for a particular
process corresponding to common-cause variation. The in-control PCA model is then
built on these data. Any periods containing variations arising from special events that
one would like to detect in the future are omitted at this stage. The choice of the
reference (in-control) data set is critical to the successful application of the procedure

(Kourti and MacGregor, 1996). Control limits for good operation on the control charts
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are defined based on this reference data set. In Phase II, values of future measurements

are compared against these limits.
Upper control limits (UCL) for the Shewhart 7' chart at significance level (type I

risk) a can be obtained for Phase I from Eq. (A.3)
m—-1Y
UCL(TA2 )a = % B(A/2,(m—A—1)/2),a (A.6)

where B,/ 41)/2)a 18 the 100(1-a)% percentile of the corresponding beta

distribution that can be computed from the 100(1-cr)% percentile of the corresponding F
distribution by using the relationship (Tracy et al., 1992)
B(A/2,(m—A—1)/2),(x = (A /(m -A- 1))FEA,m—A-]),a /(1 + (A /(m -A- 1))FEA,m—A-]),a ) (A7)

For Phase II, the corresponding UCL from Eq. (A.4) is given by

Alm? -1)

UCLIT; ), =——+ A8

( A )a m(m—A) (4(m-4))a ( )
Regarding the UCL for the Shewhart SPE chart, several procedures can be used.

Jackson and Mudholkar (1979) showed that an approximate SPE critical value at

significance level a is given by

a2 J
2205 14 2l =1) (h,~1) h (A.9)

UCL\SPE), =96
( )u 1 61 612

E(X) 26,6 ) )
where 6, = Z; (K./)k, hy=1- 3(;23, A; are the eigenvalues of the PCA residual
J=AH

2

covariance matrix E'E/(m-1), and z, is the 100(1-a)% standardized normal percentile.
Alternatively, one can use an approximation based on the weighted chi-squared

distribution ( gy;) proposed by Box (1954). Nomikos and MacGregor (1995) suggested

a simple and fast way to estimate the parameters g and /4, which is based on matching

moments between agy; distribution and the sample distribution of SPE. The mean (
w = gh) and variance (o° = 2g’h) of the gy, distribution are equated with the sample
mean (b) and variance (v) of the SPE sample. Hence, the upper SPE control limit at

significance level a is given by

(A.10)

2b2/v),ot

UCL(SPE), = ﬁxf
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where X(22b2 a is the 100(1-a)% percentile of the corresponding chi-squared

distribution.

Another method based on the statistical test of equality of variances from normal
distributions is proposed by Eriksson et al. (2001). Based on the SPE, they define the
absolute distance to the model (DModX) of an observation as its (corrected) residual

standard deviation

SPE
DModX =c | —— A.ll
o c (K—A) ( )

where c is a correction factor (function of the number of observations and the number of
components) to be used in Phase 1. This correction factor takes into account that the
distance to the model (DModX) is expected to be slightly smaller for an observation in
the reference set because it has influenced the model. This correction only matters if the
number of observations in the reference set is small. In Phase II, c=1.

They also define the normalized distance to the model (DModX,,m) as

DModyx,, = PModX (A.12)

So

m K
where s, = \/ E Z e, /(m -A- 1)(K - A) is the pooled residual standard deviation. This
i=l k=l

is an estimation of the residual variability taking into account all the observations used
to build the model (reference data set).

Assuming that the statistic (DModX,,m)" has an approximate F distribution with
K-A4 and (m-A-1)(K-A) degrees of freedom for the in-control observations, the UCL for

the Shewhart DModX chart at significance level a is expressed as

UCL(DModX), =5, [F s (A.13)

)(K-A)).a

where Fiy_, a1\ k-4) 1S the 100(1-2)% percentile of the corresponding £ distribution.

m-A4-1

The normality assumption on which these calculations are based is usually quite
reasonable in practice. Anyway, control limits for multivariate charts can be obtained
from distribution-free methods by repeated sampling. The only requirement is to have a
large in-control data set from which the external reference distribution (Box et al.,
1978) for any statistic can be obtained.

The two multivariate control charts (7 and SPE) differ in their conceptual

meaning. They are two complementary indices that provide a picture of the wellness of
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the process at a glance (Kourti, 2005). The T chart checks if the projection of an

observation on the hyperplane defined by the latent subspace is within the limits
determined by the reference (in-control) data. Thus, a value of this statistic exceeding
the control limits indicate that the corresponding observation presents abnormal extreme
values in some (or all) of its measured K variables, even though it maintains the
correlation structure between the variables in the model. This observation can be tagged
as an abnormal outlier inside the PCA model (an extremist or severe outlier) (Martens
and Naes 1989). On the other hand, the SPE chart checks if the distance (noise
variation) of an observation to the latent hyperplane is inside the control limits. The SPE
chart values exceeding the control limits are related to observations that do not behave
in the same way as the ones used to create the model (in-control data), in the sense that
there is a breakage of the correlation structure of the model. This chart will detect the
occurrence of any new event that cause the process to move away from the hyperplane
defined by the reference model. This kind of observations can be tagged as outliers
outside the model (an alien or moderate outlier) (Martens and Naes, 1989).

Severe outliers are influential observations with high leverage on the model, i.e.,
with strong power to pull the principal directions toward themselves, creating fictitious
components and misleading the PCA model (Eriksson ef al., 2001). Therefore, model
validation is critical in the Phase I stage in order to remove from the data matrix these
dangerous outlier (out-of-control) observations and, afterwards, recalculate the PCA
model. Before removing any observation from the data matrix, some diagnostics using
contribution plots (discussed below) and process insight should be used in order to sort
out false alarm outliers from the real ones. This process of model building and
validation is done iteratively until no multivariate control chart signals any real outlier.
As a side effect from this debugging procedure, the root causes of the out-of-control
observations can be discovered, improving process knowledge and future process

performance.

A.2 Phase II (model exploitation): on-line process monitoring

Once the reference PCA model and the control limits for the multivariate control
charts are obtained, new process observations can be monitored on-line. When a new

observation vector z; is available, after pre-processing it is projected onto the PCA
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model yielding the scores and the residuals, from which the value of the Hotelling’s T';

and the value of the SPE are calculated. This way, the information contained in the

measured K variables is summarized in these two indices that are plotted in the
corresponding multivariate 7 and SPE control charts. No matter what the number of

the measured variables K is, only two points have to be plotted on the charts and
checked against the control limits. The SPE chart should be checked first. If the points
remain below the control limits in both charts the process is considered to be in-control.
If a point is detected to be beyond the limits of one of the charts, then a diagnostic
approach to isolate the measured variables responsible for the out-of-control signal is
needed. In LSb-MSPC contribution plots (Kourti and MacGregor 1996) are commonly
used for this purpose.

Contribution plots can be derived for abnormal points in both charts. If the SPE
chart signals a new out-of-control observation, the contribution of each measured k™
variable to the SPE at this new abnormal observation is given by its corresponding

squared residual

Cont(SPE’.xnew,k ) = ejew,k = (xnew)k - x:ew,k )2 (A 14)
In case of using the distance to the model (DMODJX) statistic, the contribution of each
measured A" variable to the DMODX is given by (Eriksson ef al., 2001)

Cont(DMODX ;x,,,, )= W, €, (A.15)

where wy is the square root of the explained sum of squares for the ™ variable.

Variables with high contributions in this plot should be investigated.
If the abnormal observation is detected by the T'; chart the diagnosis procedure is

carried out in two steps: (i) a bar plot of the normalized scores for that observation
(taew.a/ha)” s plotted and the a™ score with the highest normalized value is selected; (i)
the contribution of each measured k™ variable to this ™ score at this new abnormal
observation is given by

Cont (tnew,a > Xpewk ) = PakXnewk (A.16)
where p, is the loading of the A-th variable at component a. A plot of these
contributions is created. Variables on this plot with high contributions but with the same
sign as the score should be investigated (contributions of the opposite sign, will only

make the score smaller). When there are some scores with high normalized values, an
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overall average contribution per variable can be calculated, over all the selected scores
(Kourti, 2005).

Contribution plots are a powerful tool for fault diagnosis. They provide a list of
the process variables that contribute numerically to the out-of-control condition (they
are no longer consistent with normal operating conditions), but they do not reveal the
actual cause of the fault. Those variables and any variables highly correlated with them
should be investigated. Incorporation of technical process knowledge is crucial to
diagnose the problem and discover the root causes of the fault.

Apart from the T, and SPE control charts, other charts such as the univariate time

series plots of the scores, or scatter score plots can be useful (both in Phase I and II) for
detecting and diagnosing out-of-control situations and also for improving process

understanding.
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